

### 2024 APSS Medtronic Fellowship Report

#### Fellow: Masayoshi Iwamae, MD

Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan

Fellowship period: 17<sup>th</sup> September, 2024 – 16<sup>th</sup> December, 2024

Host:

- 1. Prof. Dato' Dr. Kwan Mun Keong
- 2. Prof. Dr. Chris Chan Yin Wei
- 3. Associate Prof. Dr. Chiu Chee Kidd

#### **Fellowship Center:**

Department of Orthopaedic Surgery, Faculty of Medicine, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Universiti Malaya, Kuala Lumpur, Malaysia.













Osaka Metropolitan University



(Spine Section of APOA)

#### Introduction

First, I feel truly fortunate to have had the opportunity to participate in this traveling fellowship. I am deeply grateful to the Asia Pacific Spine Society (APSS) and the University of Malaya for providing me with this invaluable experience and for enabling me to complete this fellowship successfully.

Allow me to describe the appeal of this fellowship. The program comprehensively supported me financially, which allowed me to focus on gaining a fulfilling fellowship experience. Another notable aspect of this fellowship is the wide range of host institutions available, enabling participants to select facilities that specialize in their desired subspecialty.

Since I was particularly interested in scoliosis treatment, I chose the University of Malaya as my host institution. At this institution, approximately 250 scoliosis surgeries are performed annually by a highly skilled team of three surgeons: Professor Dato Dr. Kwan, Professor Dr. Chris, and Associate Professor Dr. Chiu. The scoliosis surgeries were particularly refined, showcasing exceptional techniques in exposure, screw placement, correction, adjustment of balance, and wound closure. Every step of the procedure was purposeful, and I had the privilege of observing beautifully executed surgeries with no wasted effort.

Moreover, significant emphasis was placed on developing a highly efficient spinal surgery team (dedicated spine team). With only one operating room designated for spine surgeries each day, efficient use of the operating room was essential to achieve this high volume of cases. Processes such as patient admission, anesthesia induction, intraoperative management, anesthesia recovery, and patient turnover were all remarkably smooth, thanks to a highly dedicated spine team.

Notably, Prof. Shahnaz from the anesthesia department was outstanding, ensuring perfect intraoperative anesthesia management that facilitated the surgeons' work. The radiology technicians were equally impressive, offering immediate feedback if they suspected screw malposition under fluoroscopy. Additionally, the scrub nurses had a deep understanding of surgical procedures and made significant contributions to the operations. The entire dedicated spine team worked cohesively to deliver efficient and high-quality care, resulting in excellent surgical outcomes.

They were also highly committed to education. The institution also hosted observational surgical courses, attracting visitors from numerous countries. These visitors were greatly impressed by the meticulously prepared preoperative plans and surgical techniques that the team generously shared.

I feel incredibly fortunate to have spent three months studying scoliosis treatment in such an outstanding environment.



(Spine Section of APOA)

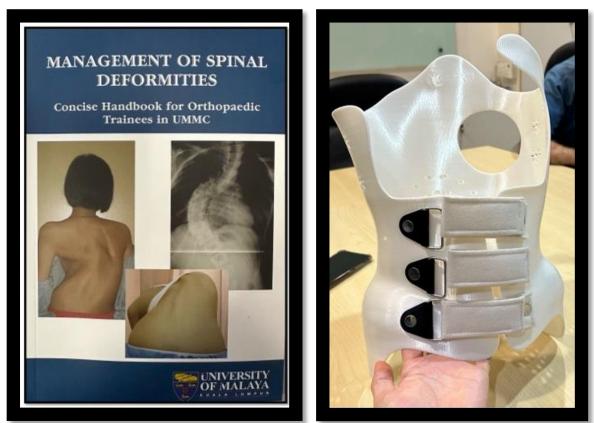


Dedicated spine team

#### Weekly Schedule

| Spine Team Weekly Roster 2024 |                 |                           |                |                           |                       |          |
|-------------------------------|-----------------|---------------------------|----------------|---------------------------|-----------------------|----------|
| Time                          | Monday          | Tuesday                   | Wednesday      | Thursday                  | Friday                | Saturday |
| 0700-0800                     | Ward round      | Spine Teaching<br>+ Preop | Preop teaching | Spine Teaching<br>+ Preop | Ward round            |          |
|                               |                 | Presentation              |                | Presentation              | Research meeting      |          |
| 0800-0900                     |                 | Long case<br>teaching     |                |                           | Long case<br>teaching |          |
| 0900-1300                     | Spine<br>clinic |                           | от             | ΟΤ                        | Scoliosis<br>clinic   | от       |
| 1300-1700                     | Research        | от                        |                |                           | Research              |          |
| 1700-2200                     |                 |                           |                |                           | от                    |          |




(Spine Section of APOA)

#### **Spine and Scoliosis Clinics**

Mondays and Fridays were designated outpatient clinic days. In particular, on Friday, Scoliosis Clinic exclusively catered to scoliosis patients, including those with severe scoliosis exceeding a Cobb angle of 150 degrees. The University of Malaya follows a unified treatment approach for scoliosis, guided by their evidence-based handbook, which they have independently published. This handbook ensures that all staff, including junior orthopedic surgeons, adhere to consistent treatment strategies.

For brace treatment, great emphasis was placed on patient education to improve brace compliance, including the distribution of informational pamphlets to patients. Additionally, they used braces created with 3D printing technology. I had the opportunity to observe the entire process, from measurements to the production of these braces, which provided valuable insight into the latest advancements in brace therapy.

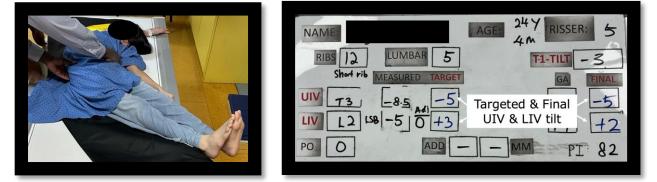
Treatment plans for follow-up cases and those undergoing brace therapy were meticulously managed, and comprehensive longitudinal data on scoliosis patients were systematically collected. I look forward to future reports from this university on the natural history of scoliosis and the efficacy of brace treatment.





(Spine Section of APOA)

#### Scoliosis


The preoperative planning for surgeries was incredibly logical and detailed. One of the most impressive aspects was their practice of obtaining whole-spine bending X-rays under the direct supervision of physicians for every case. This approach ensures high reliability and reproducibility, addressing the common issue of variability when patients are left to perform the bending on their own. Using these reliable whole-spine bending X-rays, they preoperatively planned the UIV tilt and LIV tilt to be achieved during surgery.

Additionally, full-length lower limb X-rays were obtained for every patient to evaluate leg length discrepancies, pelvic hypoplasia, and lower limb alignment. Based on this evaluation, the amount of pelvic tilt correction needed during surgery was also pre-planned.

Intraoperatively, they used a crossbar system for every case to adjust the alignment precisely, ensuring that the UIV tilt and LIV tilt matched the preoperative plan. They had a clear standard: once a good spinal balance was achieved, the scoliosis correction was considered complete. This meticulous planning eliminated any uncertainty about alignment adjustments during surgery.

Postoperative whole-spine X-rays consistently showed that the planned UIV and LIV tilts were maintained, and the T1 tilt was successfully leveled, resulting in excellent medial shoulder balance and neck tilt. This demonstrated the effectiveness of their preoperative planning.

The key to this process lies in the reliability of the whole-spine bending X-rays. I had the chance to guide a patient during the bending X-ray process, and I found it surprisingly simple and efficient. I hope to implement this technique in my own institution in the future.

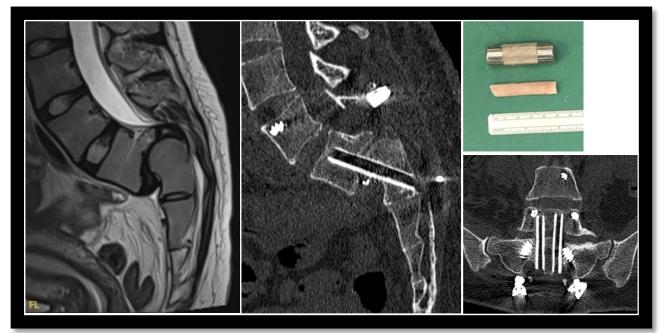


(left) Active bending film under direct surpervision of phisicians (right) Intraoperative targeted and final UIV and LIV tilts



(Spine Section of APOA)




Good spinal alignment, particularly in terms of T1 tilt, was achieved, leading to excellent medial shoulder and neck balance.



(Spine Section of APOA)

#### High-grade dysplastic spondylolisthesis

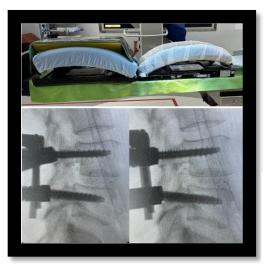
They provided exceptional treatment for cases of severe congenital spondylolisthesis, which I would like to introduce. A 24-year-old female was diagnosed with a high-grade L5/S1 dysplastic spondylolisthesis (*Meyerding classification grade* IV). Her radiographs showed high-grade spondylolisthesis of L5/S1 with dysplastic features of dome-shaped sacral promontory and anterior slippage of L5 vertebra on S1 upper endplate. A T2-weighted MRI revealed severe compression of the dural sac and nerve roots at L5/S1 levels. In the cases of high-grade dysplastic spondylolisthesis, the overcorrection of spondylolisthesis was reported to have a high incidence of neurological deficits due to the traction of L5 nerve root. Therefore, in situ spinal fusion was performed to avoid neurological deficits. Meanwhile, according to the previous reports, the incidence of pseudoarthrosis at the L5/S1 level was clinically higher in in-situ fusion cases compared to reduction cases. To prevent pseudoarthrosis, fibular strut grafts were harvested to be used to augment the interbody fusion at the L5/S1 level. A 9 mm diameter bone tunnel was created with a guidewire, and the fibula bone graft was trimmed to a 9 mm diameter prior to insertion. This technique is an innovative method, and it was a highly impressive case for me.





(Spine Section of APOA)

#### Minimally invasive surgery


At this facility, minimally invasive surgical treatments were actively performed. In MIS-TLIF, they approached the disc through a small skin incision for percutaneous screw incision and removed the facet joint on one side. It is often said that obtaining sagittal alignment in MIS-TLIF is challenging, but by creatively utilizing the operating table, they were particularly focused on correcting the alignment of the lower lumbar spine (L4-S1 angle). Postoperative X-rays showed significant correction of the translation of the vertebral body and acquisition of lordosis.

For lumbar decompression and herniated disc discectomy, they introduced full-endoscopic spine surgery (FESS). Through the interlaminar approach, they performed minimal bone resection and preserved facet joint as much as possible while excising the ligamentum flavum and disc.

They were truly skilled surgeons, demonstrating various techniques that were highly educational for me. The surgeries prioritized safety above all, with each maneuver being precise and purposeful, resulting in shorter operative times.



Full-endoscopic spine surgery performed by Prof. Chris



Innovative use of the operating table and correction of transition of vertebral body and alignment acquisition with spinal implants.



(Spine Section of APOA)

### Fellowship Experience

During this fellowship, there were many events. In the surgical observation course (17th and 18th Advanced Operative Course), I attended lectures filled with the professors' knowledge and experience over four days, and I had the opportunity to observe numerous scoliosis surgeries.



 $17^{\text{th}} \text{ and } 18^{\text{th}} \text{ Advanced Operative Course}$ 

Additionally, as part of the JSSR Asia Traveling Fellow program, Dr. Yuki Taniguchi from the University of Tokyo, Dr. Hiroshi Takahashi from the University of Tsukuba, and Dr. Satoshi Maki from Chiba University visited and exchanged ideas. It was a great pleasure for me to have my knowledge organized and clarified during the lively discussions with these three esteemed professors.



JSSR Asia traveling fellowship



(Spine Section of APOA)

The APSS Basic Spine Course was also held, and Dr. Shinji Takahashi from our university visited the University of Malaya to give a lecture. Additionally, there was a workshop on surgical techniques using sawbones, which provided a great opportunity to learn surgical skills while visualizing actual procedures. Later, an event was organized to experience the nature of northern Malaysia, where we had the unforgettable experience of taking pictures with wild monkeys on our shoulders.



APSS Basic Spine Course

I had the opportunity to give a lecture on cervical degenerative diseases as part of the Spine Case-Based Educational Course for junior orthopedic surgeons at the University of Malaya. The orthopedic surgeons here are very diligent in their studies, and I have got memories of them occasionally taking photos of the lecture content and listening attentively.





(Spine Section of APOA)

During this period, I had countless memorable encounters. After surgeries, I was often taken to a curry restaurant (Nasi Kanda) by the professors, and on Sundays, despite their busy schedules, they took me to a famous Bak Kut Teh restaurant in the countryside. I also went out for meals with the secretaries, who totally supported me, and I spent fulfilling days. Another wonderful memory was enjoying dinner with Prof. Kwan, his family and Dr. Sin Ying, while experiencing the Christmas atmosphere in Malaysia. Everyone was so kind and generous, and I believe that the enriching experience of this fellowship was made possible thanks to all the professors, staffs, and friends.





(Spine Section of APOA)

#### What has changed? -My vision for the future-

Through this fellowship, I have gained so much.

First, regarding scoliosis, in our facility, we did not have a clear target value for surgical alignment in preoperative planning. However, at the University of Malaya, there was a clear target value, and when surgery was performed according to this predetermined target, a beautiful alignment was achieved and maintained postoperatively. Considering this, preoperative planning for postoperative alignment in the TKA and THA, is done thoroughly, so it seemed odd that there was no such approach in scoliosis surgery. I believe they have found the answer to that question here. The approach at the University of Malaya is fully documented in the articles, and I would like to implement this method at our university first. I was also taught the characteristics of cases where achieving a good alignment is difficult. Until now, I had simply thought that the difficulty of scoliosis surgery was dependent on the size of the Cobb angle, but that is significantly different. They shared their knowledge of pitfalls in scoliosis surgery, such as the size of the pedicle, the strength of the UIV anchor, flexibility, T1 tilt, and BMI, which greatly changed my perspective on scoliosis surgery.

Next, I learned the importance of education and knowledge sharing. This university organizes numerous lectures, seminars, and surgical observation courses, inviting lecturers and participants from various countries. In this environment, they not only share knowledge but also gain new ideas. I believe that an attractive person is always someone who is always curious, constantly exploring new things, and generously offering new knowledge and ideas. The professors here were truly admirable and inspiring. I also want to become a person who always seeks new things, alongside sharing education and knowledge.

Finally, I would like to express my sincere gratitude to the APSS committee for providing me with this incredible opportunity. I am deeply thankful to the professors and staffs at the University of Malaya for generously sharing their knowledge and skills with me. Based on this wonderful experience, I have made the decision to be involved in scoliosis treatment in the future. This traveling fellowship program has undeniably been a significant turning point in my life. Thank you so much.



# Asia Pacific Spine Society (APSS) (Spine Section of APOA)

| No | Date of operation | Diagnosis                   | Type of procedure |
|----|-------------------|-----------------------------|-------------------|
| 1  | 2024/9/18         | AdIS                        | PSF               |
| 2  | 2024/9/18         | Spondyloptosis              | PSF               |
| 3  | 2024/9/19         | Spondylolisthesis           | TLIF              |
| 4  | 2024/9/20         | AIS                         | PSF               |
| 5  | 2024/9/21         | AIS                         | PSF               |
| 6  | 2024/9/21         | AIS                         | PSF               |
| 7  | 2024/9/21         | LSS                         | PD                |
| 8  | 2024/9/21         | Spondylolisthesis           | PLF + TLIF        |
| 9  | 2024/9/24         | LSS                         | PD                |
| 10 | 2024/9/24         | Spondylolisthesis           | TLIF              |
| 11 | 2024/9/25         | AIS                         | PSF               |
| 12 | 2024/9/25         | AIS                         | PSF               |
| 13 | 2024/9/25         | Spondylolisthesis           | TLIF              |
| 14 | 2024/9/25         | Metastatic tumor            | Biopsy            |
| 15 | 2024/9/26         | AIS                         | PSF               |
| 16 | 2024/9/27         | AIS                         | PSF               |
| 17 | 2024/9/27         | AIS                         | PSF               |
| 18 | 2024/9/27         | LSS                         | PD                |
| 19 | 2024/10/1         | Cervical spinal cord injury | Cervical PSF      |
| 20 | 2024/10/2         | AIS                         | PSF               |
| 21 | 2024/10/2         | AIS                         | PSF               |
| 22 | 2024/10/2         | AIS                         | PSF               |
| 23 | 2024/10/2         | AIS                         | PSF               |
| 24 | 2024/10/3         | AIS                         | PSF               |
| 25 | 2024/10/3         | AIS                         | PSF               |
| 26 | 2024/10/5         | AIS                         | PSF               |
| 27 | 2024/10/5         | AIS                         | PSF               |
| 28 | 2024/10/5         | AIS                         | PSF               |
| 29 | 2024/10/5         | AIS                         | PSF               |
| 30 | 2024/10/8         | Neuromuscular scoliosis     | PSF               |
| 31 | 2024/10/9         | AIS                         | PSF               |

| 32 | 2024/10/9  | Spondylolisthesis            | MIS-TLIF              |
|----|------------|------------------------------|-----------------------|
| 33 | 2024/10/9  | LSS                          | PD                    |
| 34 | 2024/10/9  | LSS                          | PD                    |
| 35 | 2024/10/10 | Scoliosis with Syringomyelia | PSF                   |
| 36 | 2024/10/10 | LSS                          | PD                    |
| 37 | 2024/10/11 | AIS                          | PSF                   |
| 38 | 2024/10/11 | PID                          | FESS                  |
| 39 | 2024/10/12 | Spondylolisthesis            | TLIF                  |
| 40 | 2024/10/12 | AdIS                         | PSF                   |
| 41 | 2024/10/12 | AIS                          | PSF                   |
| 42 | 2024/10/15 | AIS                          | PSF                   |
| 43 | 2024/10/16 | AdIS                         | PSF                   |
| 44 | 2024/10/16 | AIS                          | PSF                   |
| 45 | 2024/10/16 | PID                          | PD                    |
| 46 | 2024/10/16 | LSS                          | PD                    |
| 47 | 2024/10/17 | Spondylolisthesis            | PLIF                  |
| 48 | 2024/10/22 | AIS                          | PSF                   |
| 49 | 2024/10/22 | Spondylolisthesis            | TLIF                  |
| 50 | 2024/10/22 | CSM/LSS                      | PSF/PD                |
| 51 | 2024/10/23 | OVF                          | VP, PSF               |
| 52 | 2024/10/23 | LSS                          | PLF                   |
| 53 | 2024/10/26 | EOS                          | Growing rod           |
| 54 | 2024/10/26 | AIS                          | PSF                   |
| 55 | 2024/10/26 | AIS                          | PSF                   |
| 56 | 2024/10/26 | PID                          | PD                    |
| 57 | 2024/10/29 | AIS                          | PSF                   |
| 58 | 2024/10/29 | Congenital Kyphoscoliosis    | PSF                   |
| 59 | 2024/10/30 | AdIS                         | PSF                   |
| 60 | 2024/10/30 | AdIS                         | PSF                   |
| 61 | 2024/10/30 | AdIS                         | PSF                   |
| 62 | 2024/10/30 | AdIS                         | PSF                   |
| 63 | 2024/11/2  | LSS                          | PD                    |
| 64 | 2024/11/2  | AdIS                         | PSF                   |
| 65 | 2024/11/5  | Syndromic Scoliosis (NF1)    | Growing rod insertion |
| 66 | 2024/11/5  | Spondylolisthesis            | Nerve root injection  |
| 67 | 2024/11/6  | AIS                          | PSF                   |
| 68 | 2024/11/6  | AdIS                         | PSF                   |

| 69  | 2024/11/7  | AIS                        | PSF                          |
|-----|------------|----------------------------|------------------------------|
| 70  | 2024/11/7  | AIS                        | PSF                          |
| 71  | 2024/11/8  | AIS                        | PSF                          |
| 72  | 2024/11/8  | AIS                        | PSF                          |
| 73  | 2024/11/9  | AIS                        | PSF                          |
| 74  | 2024/11/9  | AIS                        | PSF                          |
| 75  | 2024/11/9  | AIS                        | PSF                          |
| 76  | 2024/11/9  | LSS                        | PD                           |
| 77  | 2024/11/12 | LSS                        | FESS                         |
| 78  | 2024/11/12 | LSS                        | FESS                         |
| 79  | 2024/11/12 | PID                        | PD                           |
| 80  | 2024/11/18 | LSS                        | PD                           |
| 81  | 2024/11/18 | LSS                        | PD                           |
| 82  | 2024/11/19 | PID                        | PD                           |
| 83  | 2024/11/20 | AIS                        | PSF                          |
| 84  | 2024/11/20 | AdIS                       | PSF                          |
| 85  | 2024/11/20 | AIS                        | PSF                          |
| 86  | 2024/11/20 | Spondylolisthesis          | MIS-TLIF                     |
| 87  | 2024/11/21 | PID                        | PD                           |
| 00  | 2024/11/21 | Rod brackage of postop     | rod connection and growing   |
| 88  |            | Congenital kyophoscoliosis | rod distraction              |
| 89  | 2024/11/21 | PID                        | PD                           |
| 90  | 2024/11/22 | LSS                        | PD                           |
| 91  | 2024/11/22 | Spondylolisthesis          | MIS-TLIF                     |
| 92  | 2024/11/23 | Spondyloptosis             | PSF                          |
| 93  | 2024/11/23 | Spondylolisthesis          | MIS-TLIF                     |
| 94  | 2024/11/23 | OPLL & LSS                 | Laminectomy with fusion & PD |
| 95  | 2024/11/25 | Spondylolisthesis          | TLIF                         |
| 96  | 2024/11/26 | AIS                        | PSF                          |
| 97  | 2024/11/27 | AIS                        | PSF                          |
| 98  | 2024/11/27 | AIS                        | PSF                          |
| 99  | 2024/11/27 | AIS                        | PSF                          |
| 100 | 2024/11/27 | Spondylolisthesis          | MIS-TLIF                     |
| 101 | 2024/11/28 | Congenital scoliosis       | PSF                          |
| 102 | 2024/11/28 | AIS                        | PSF                          |
| 103 | 2024/11/30 | AIS                        | PSF                          |
| 104 | 2024/11/30 | AIS                        | PSF                          |

| 105 | 2024/11/30 | AIS                      | PSF                     |
|-----|------------|--------------------------|-------------------------|
| 106 | 2024/12/3  | Non idiopathic scoliosis | PSF                     |
| 107 | 2024/12/3  | PID                      | PD                      |
| 108 | 2024/12/4  | AIS                      | PSF                     |
| 109 | 2024/12/4  | LSS                      | MIS-TLIF                |
| 110 | 2024/12/4  | PID                      | PD                      |
| 111 | 2024/12/4  | Spondylolisthesis        | MIS-TLIF (L3/4/5)       |
| 112 | 2024/12/5  | Metastatic cancer        | PD (T7-T9)              |
| 113 | 2024/12/6  | AIS                      | PSF                     |
| 114 | 2024/12/7  | AdIS                     | PSF                     |
| 115 | 2024/12/7  | AIS                      | PSF                     |
| 116 | 2024/12/7  | AIS                      | PSF                     |
| 117 | 2024/12/7  | OYL                      | PLF+PD                  |
| 118 | 2024/12/9  | LSS                      | PLF                     |
| 119 | 2024/12/10 | AIS                      | PSF                     |
| 120 | 2024/12/10 | EOS                      | Growing rod distraction |
| 121 | 2024/12/10 | Chance fracture          | PSF                     |
| 122 | 2024/12/11 | AIS                      | PSF                     |
| 123 | 2024/12/11 | AIS                      | PSF                     |
| 124 | 2024/12/11 | AIS                      | PSF                     |
| 125 | 2024/12/11 | AdIS                     | PSF                     |
| 126 | 2024/12/11 | AIS                      | PSF                     |
| 127 | 2024/12/12 | AIS                      | PSF                     |
| 128 | 2024/12/13 | AdIS                     | PSF                     |
| 129 | 2024/12/13 | Neurofibromatosis        | Tumor resection         |
| 130 | 2024/12/13 | EOS                      | Growing rod distraction |
| 131 | 2024/12/14 | LSS                      | PD                      |
| 132 | 2024/12/14 | PID                      | PD                      |
| 133 | 2024/12/14 | PID                      | PD                      |
| 134 | 2024/12/14 | PID                      | PD                      |

**Abbreviations;** AIS, adolescent idiopathic scoliosis; PID, prolapsed intervertebral disc; LSS, lumbar spinal stenosis; OYL, ossification of ligament flavum; OPLL, ossification of posterior longitudinal ligament; TLIF, trans-foraminal lumbar interbody fusion; PSF, posterior spinal fusion; MIS, minimum invasive surgery; PD, posterior decompression; PLF; posterior lateral fusion.